Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
JAMA Pediatr ; 177(6): 640-641, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2296347

ABSTRACT

This cross-sectional study evaluates IgG antibody levels in children and adolescents in Germany following SARS-CoV-2 infection.


Subject(s)
COVID-19 , Saliva , Humans , Adolescent , Child , SARS-CoV-2/genetics , Germany/epidemiology , Antibodies, Viral
2.
Clin Infect Dis ; 2022 Jun 19.
Article in English | MEDLINE | ID: covidwho-2237813

ABSTRACT

BACKGROUND: The rapid emergence of the omicron variant and its large number of mutations led to its classification as a variant of concern (VOC) by the WHO. Subsequently, omicron evolved into distinct sublineages (e.g. BA1 and BA2), which currently represent the majority of global infections. Initial studies of the neutralizing response towards BA1 in convalescent and vaccinated individuals showed a substantial reduction. METHODS: We assessed antibody (IgG) binding, ACE2 (Angiotensin-Converting Enzyme 2) binding inhibition, and IgG binding dynamics for the omicron BA1 and BA2 variants compared to a panel of VOC/VOIs, in a large cohort (n = 352) of convalescent, vaccinated, and infected and subsequently vaccinated individuals. RESULTS: While omicron was capable efficiently binding to ACE2, antibodies elicited by infection or immunization showed reduced binding capacities and ACE2 binding inhibition compared to WT. Whereas BA1 exhibited less IgG binding compared to BA2, BA2 showed reduced inhibition of ACE2 binding. Among vaccinated samples, antibody binding to omicron only improved after administration of a third dose. CONCLUSION: omicron BA1 and BA2 can still efficiently bind to ACE2, while vaccine/infection-derived antibodies can bind omicron. The extent of the mutations within both variants prevent a strong inhibitory binding response. As a result, both omicron variants are able to evade control by pre-existing antibodies.

3.
Lancet Microbe ; 4(3): e140-e148, 2023 03.
Article in English | MEDLINE | ID: covidwho-2184914

ABSTRACT

BACKGROUND: Capsid virus-like particles (cVLP) have proven safe and immunogenic and can be a versatile platform to counter pandemics. We aimed to clinically test a modular cVLP COVID-19 vaccine in individuals who were naive to SARS-CoV-2. METHODS: In this phase 1, single-centre, dose-escalation, adjuvant-selection, open-label clinical trial, we recruited participants at the Radboud University Medical Center in Nijmegen, Netherlands, and sequentially assigned them to seven groups. Eligible participants were healthy, aged 18-55 years, and tested negative for SARS-CoV-2 and anti-SARS-CoV-2 antibodies. Participants were vaccinated intramuscularly on days 0 and 28 with 6 µg, 12 µg, 25 µg, 50 µg, or 70 µg of the cVLP-based COVID-19 vaccine (ABNCoV2). A subgroup received MF59-adjuvanted ABNCoV2. Follow-up was for 24 weeks after second vaccination. The primary objectives were to assess the safety and tolerability of ABNCoV2 and to identify a dose that optimises the tolerability-immunogenicity ratio 14 days after the first vaccination. The primary safety endpoint was the number of related grade 3 adverse events and serious adverse events in the intention-to-treat population. The primary immunogenicity endpoint was the concentration of ABNCoV2-specific antibodies. The trial is registered with ClinicalTrials.gov, NCT04839146. FINDINGS: 45 participants (six to nine per group) were enrolled between March 15 and July 15, 2021. Participants had a total of 249 at least possibly related solicited adverse events (185 grade 1, 63 grade 2, and one grade 3) within a week after vaccination. Two serious adverse events occurred; one was classified as a possible adverse reaction. Antibody titres were dose-dependent with levels plateauing at a vaccination dose of 25-70 µg ABNCoV2. After second vaccination, live virus neutralisation activity against major SARS-CoV-2 variants was high but was lower with an omicron (BA.1) variant. Vaccine-specific IFNγ+ CD4+ T cells were induced. INTERPRETATION: Immunisation with ABNCoV2 was well tolerated, safe, and resulted in a functional immune response. The data support the need for additional clinical development of ABNCoV2 as a second-generation SARS-CoV-2 vaccine. The modular cVLP platform will accelerate vaccine development, beyond SARS-CoV-2. FUNDING: EU, Carlsberg Foundation, and the Novo Nordisk Foundation.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Adjuvants, Immunologic , Capsid , Capsid Proteins , COVID-19 Vaccines , SARS-CoV-2 , Viral Vaccines/adverse effects
4.
Front Immunol ; 13: 993354, 2022.
Article in English | MEDLINE | ID: covidwho-2115279

ABSTRACT

Immunoglobulin G (IgG) antibodies play an important role in the immune response against viruses such as SARS-CoV-2. As the effector functions of IgG are modulated by N-glycosylation of the Fc region, the structure and possible function of the IgG N-glycome has been under investigation in relation to divergent COVID-19 disease courses. Through LC-MS analysis we studied both total IgG1 and spike protein-specific IgG1 Fc glycosylation of 129 German and 163 Brazilian COVID-19 patients representing diverse patient populations. We found that hospitalized COVID-19 patients displayed decreased levels of total IgG1 bisection and galactosylation and lowered anti-S IgG1 fucosylation and bisection as compared to mild outpatients. Anti-S IgG1 glycosylation was dynamic over the disease course and both anti-S and total IgG1 glycosylation were correlated to inflammatory markers. Further research is needed to dissect the possible role of altered IgG glycosylation profiles in (dys)regulating the immune response in COVID-19.


Subject(s)
COVID-19 , Immunoglobulin G , Humans , SARS-CoV-2 , Glycosylation , Biomarkers
5.
J Clin Invest ; 2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2089016

ABSTRACT

The SARS-CoV-2 spike (S) glycoprotein is synthesized as large precursor protein and must be activated by proteolytic cleavage into S1 and S2. A recombinant modified vaccinia virus Ankara (MVA) expressing native, full-length S protein (MVA-SARS-2-S) is currently under investigation as candidate vaccine in phase I clinical studies. Initial results from immunogenicity monitoring revealed induction of S-specific antibodies binding to S2, but low-level antibody responses to the S1 domain. Follow-up investigations of native S antigen synthesis in MVA-SARS-2-S infected cells revealed limited levels of S1 protein on the cell surface. In contrast, we found superior S1 cell surface presentation upon infection with a recombinant MVA expressing a stabilized version of SARS-CoV-2 S protein with an inactivated S1/2 cleavage site and K986→P and V987→P mutations (MVA-SARS-2-ST). When comparing immunogenicity of MVA vector vaccines, mice vaccinated with MVA-SARS-2-ST mounted substantial levels of S broadly reactive antibodies that effectively neutralized different SARS-CoV-2 variants. Importantly, intramuscular MVA-SARS-2-ST immunization of hamsters and mice resulted in potent immune responses upon challenge infection and protected from disease and severe lung pathology. Our results suggest that MVA-SARS-2-ST represents an improved clinical candidate vaccine and that the presence of plasma membrane-bound S1 is highly beneficial to induce protective antibody levels.

6.
Int J Infect Dis ; 122: 427-436, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1907179

ABSTRACT

OBJECTIVES: Host genetic factors contribute to the variable severity of COVID-19. We examined genetic variants from genome-wide association studies and candidate gene association studies in a cohort of patients with COVID-19 and investigated the role of early SARS-CoV-2 strains in COVID-19 severity. METHODS: This case-control study included 123 COVID-19 cases (hospitalized or ambulatory) and healthy controls from the state of Baden-Wuerttemberg, Germany. We genotyped 30 single nucleotide polymorphisms, using a custom-designed panel. Cases were also compared with the 1000 genomes project. Polygenic risk scores were constructed. SARS-CoV-2 genomes from 26 patients with COVID-19 were sequenced and compared between ambulatory and hospitalized cases, and phylogeny was reconstructed. RESULTS: Eight variants reached nominal significance and two were significantly associated with at least one of the phenotypes "susceptibility to infection", "hospitalization", or "severity": rs73064425 in LZTFL1 (hospitalization and severity, P <0.001) and rs1024611 near CCL2 (susceptibility, including 1000 genomes project, P = 0.001). The polygenic risk score could predict hospitalization. Most (23/26, 89%) of the SARS-CoV-2 genomes were classified as B.1 lineage. No associations of SARS-CoV-2 mutations or lineages with severity were observed. CONCLUSION: These host genetic markers provide insights into pathogenesis and enable risk classification. Variants which reached nominal significance should be included in larger studies.


Subject(s)
COVID-19 , Chemokine CCL2 , Transcription Factors , COVID-19/genetics , Case-Control Studies , Chemokine CCL2/genetics , Genetic Loci , Genome-Wide Association Study , Humans , SARS-CoV-2 , Transcription Factors/genetics
7.
Front Immunol ; 12: 798859, 2021.
Article in English | MEDLINE | ID: covidwho-1581315

ABSTRACT

SARS-CoV-2 antibodies in saliva serve as first line of defense against the virus. They are present in the mucosa, more precisely in saliva, after a recovered infection and also following vaccination. We report here the antibody persistence in plasma and in saliva up to 15 months after mild COVID-19. The IgG antibody response was measured every two months in 72 participants using an established and validated in-house ELISA assay. In addition, the virus inhibitory activity of plasma antibodies was assessed in a surrogate virus neutralization test before and after vaccination. SARS-CoV-2-specific antibody concentrations remained stable in plasma and saliva and the response was strongly boosted after one dose COVID-19 vaccination.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Saliva/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/immunology , Female , Humans , Male , Middle Aged , SARS-CoV-2
8.
Front Immunol ; 12: 753435, 2021.
Article in English | MEDLINE | ID: covidwho-1485058

ABSTRACT

Saliva is a body fluid with hitherto unused potential for the assessment of SARS-CoV-2 antibodies. Specific antibodies can indicate a past SARS-CoV-2 infection and allow to estimate the proportion of individuals with a potential protective immunity. First, we carefully characterized plasma samples obtained from adult control groups with and without prior SARS-CoV-2 infection using certified reference ELISAs. Simultaneously collected saliva samples of confirmed convalescent and negative individuals where then used to validate the herein newly developed ELISA for the detection of SARS-CoV-2 IgG antibodies in saliva. The saliva ELISA was applied to assess SARS-CoV-2 exposure in young children (N = 837) in the age between 1 and 10 years in Tübingen, Germany, towards the end of the first pandemic year 2020. Sensitivity and specificity of the new saliva ELISA was 87% and 100%, respectively. With 12% of all Tübingen children sampled via their respective educational institutions, estimates of SARS-CoV-2 antibody prevalence was 1.6%. Interestingly, only 0.4% preschool kids were positive compared to 3.0% of primary school children. Less than 20% of positive children self-reported symptoms within two months prior to saliva sampling that could be associated - but not exclusively - with a SARS-CoV-2 infection. The saliva ELISA is a valid and suitable protocol to enable population-based surveys for SARS-CoV-2 antibodies. Using non-invasive sampling and saliva ELISA testing, we found that prevalence of SARS-CoV-2 antibodies was significantly lower in young children than in primary school children.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Serological Testing , COVID-19 , SARS-CoV-2/immunology , Saliva/immunology , Adult , COVID-19/diagnosis , COVID-19/immunology , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay , Female , Germany , Humans , Infant , Male , Prospective Studies
9.
JMIR Res Protoc ; 10(10): e27739, 2021 Oct 08.
Article in English | MEDLINE | ID: covidwho-1480494

ABSTRACT

BACKGROUND: The world has been confronted with the COVID-19 pandemic for more than one year. Severe disease is more often found among elderly people, whereas most young children and adolescents show mild symptoms or even remain asymptomatic, so that infection might be undiagnosed. Therefore, only limited epidemiological data on SARS-CoV-2 infection in children and young adults are available. OBJECTIVE: This study aims to determine the prevalence of SARS-CoV-2 antibodies in children from the city of Tübingen, Germany, and to measure the incidence of new cases over 12 months. METHODS: SARS-CoV-2 antibodies will be measured in saliva as a surrogate for a previous SARS-CoV-2 infection. Children will be sampled at their preschools, primary schools, and secondary schools at three time points: July 2020, October to December 2020, and April to July 2021. An adult cohort will be sampled at the same time points (ie, adult comparator group). The saliva-based SARS-CoV-2-antibody enzyme-linked immunosorbent assay will be validated using blood and saliva samples from adults with confirmed previous SARS-CoV-2 infections (ie, adult validation group). RESULTS: The first study participant was enrolled in July 2020, and recruitment and enrollment continued until July 2021. We have recruited and enrolled 1850 children, 560 adults for the comparator group, and 83 adults for the validation group. We have collected samples from the children and the adults for the comparator group at the three time points. We followed up with participants in the adult validation group every 2 months and, as of the writing of this paper, we were at time point 7. We will conduct data analysis after the data collection period. CONCLUSIONS: Infection rates in children are commonly underreported due to a lack of polymerase chain reaction testing. This study will report on the prevalence of SARS-CoV-2 infections in infants, school children, and adolescents as well as the incidence change over 12 months in the city of Tübingen, Germany. The saliva sampling approach for SARS-CoV-2-antibody measurement allows for a unique, representative, population-based sample collection process. TRIAL REGISTRATION: ClinicalTrials.gov NCT04581889; https://clinicaltrials.gov/ct2/show/NCT04581889. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/27739.

10.
Wien Klin Wochenschr ; 133(17-18): 931-941, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1351300

ABSTRACT

BACKGROUND: We used the RNActive® technology platform (CureVac N.V., Tübingen, Germany) to prepare CVnCoV, a COVID-19 vaccine containing sequence-optimized mRNA coding for a stabilized form of SARS-CoV­2 spike (S) protein encapsulated in lipid nanoparticles (LNP). METHODS: This is an interim analysis of a dosage escalation phase 1 study in healthy 18-60-year-old volunteers in Hannover, Munich and Tübingen, Germany, and Ghent, Belgium. After giving 2 intramuscular doses of CVnCoV or placebo 28 days apart we assessed solicited local and systemic adverse events (AE) for 7 days and unsolicited AEs for 28 days after each vaccination. Immunogenicity was measured as enzyme-linked immunosorbent assay (ELISA) IgG antibodies to SARS-CoV­2 S­protein and receptor binding domain (RBD), and SARS-CoV­2 neutralizing titers (MN50). RESULTS: In 245 volunteers who received 2 CVnCoV vaccinations (2 µg, n = 47, 4 µg, n = 48, 6 µg, n = 46, 8 µg, n = 44, 12 µg, n = 28) or placebo (n = 32) there were no vaccine-related serious AEs. Dosage-dependent increases in frequency and severity of solicited systemic AEs, and to a lesser extent local AEs, were mainly mild or moderate and transient in duration. Dosage-dependent increases in IgG antibodies to S­protein and RBD and MN50 were evident in all groups 2 weeks after the second dose when 100% (23/23) seroconverted to S­protein or RBD, and 83% (19/23) seroconverted for MN50 in the 12 µg group. Responses to 12 µg were comparable to those observed in convalescent sera from known COVID-19 patients. CONCLUSION: In this study 2 CVnCoV doses were safe, with acceptable reactogenicity and 12 µg dosages elicited levels of immune responses that overlapped those observed in convalescent sera.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , Adolescent , Adult , Antibodies, Viral , COVID-19/therapy , COVID-19 Vaccines , Double-Blind Method , Humans , Immunization, Passive , Immunogenicity, Vaccine , Lipids , Middle Aged , RNA, Messenger , SARS-CoV-2 , Young Adult , COVID-19 Serotherapy
11.
Sci Rep ; 11(1): 11899, 2021 06 07.
Article in English | MEDLINE | ID: covidwho-1260951

ABSTRACT

The pandemic caused by SARS-CoV-2 resulted in increasing demands for diagnostic tests, leading to a shortage of recommended testing materials and reagents. This study reports on the performance of self-sampled alternative swabbing material (ordinary Q-tips tested against flocked swab and rayon swab), of reagents for classical RNA extraction (phenol/guanidine-based protocol against a commercial kit), and of intercalating dye-based one-step quantitative reverse transcription real-time PCRs (RT-qPCR) compared against the gold standard hydrolysis probe-based assays for SARS-CoV-2 detection. The study found sampling with Q-tips, RNA extraction with classical protocol and intercalating dye-based RT-qPCR as a reliable and comparably sensitive strategy for detection of SARS-CoV-2-particularly valuable in the current period with a resurgent and dramatic increase in SARS-CoV-2 infections and growing shortage of diagnostic materials especially for regions limited in resources.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , RNA, Viral/genetics , SARS-CoV-2/pathogenicity , Specimen Handling , COVID-19 Testing/methods , Humans , Real-Time Polymerase Chain Reaction/methods , Reverse Transcription/physiology , Specimen Handling/methods , Time Factors
12.
Heliyon ; 7(6): e07147, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1252937

ABSTRACT

The SARS-CoV-2 virus is the causative agent of the global COVID-19 infectious disease outbreak, which can lead to acute respiratory distress syndrome (ARDS). However, it is still unclear how the virus interferes with immune cell and metabolic functions in the human body. In this study, we investigated the immune response in acute or convalescent COVID-19 patients. We characterized the peripheral blood mononuclear cells (PBMCs) using flow cytometry and found that CD8+ T cells were significantly subsided in moderate COVID-19 and convalescent patients. Furthermore, characterization of CD8+ T cells suggested that convalescent patients have significantly diminished expression of both perforin and granzyme A. Using 1H-NMR spectroscopy, we characterized the metabolic status of their autologous PBMCs. We found that fructose, lactate and taurine levels were elevated in infected (mild and moderate) patients compared with control and convalescent patients. Glucose, glutamate, formate and acetate levels were attenuated in COVID-19 (mild and moderate) patients. In summary, our report suggests that SARS-CoV-2 infection leads to disrupted CD8+ T cytotoxic functions and changes the overall metabolic functions of immune cells.

13.
Nat Commun ; 12(1): 3109, 2021 05 25.
Article in English | MEDLINE | ID: covidwho-1243298

ABSTRACT

SARS-CoV-2 is evolving with mutations in the receptor binding domain (RBD) being of particular concern. It is important to know how much cross-protection is offered between strains following vaccination or infection. Here, we obtain serum and saliva samples from groups of vaccinated (Pfizer BNT-162b2), infected and uninfected individuals and characterize the antibody response to RBD mutant strains. Vaccinated individuals have a robust humoral response after the second dose and have high IgG antibody titers in the saliva. Antibody responses however show considerable differences in binding to RBD mutants of emerging variants of concern and substantial reduction in RBD binding and neutralization is observed against a patient-isolated South African variant. Taken together our data reinforce the importance of the second dose of Pfizer BNT-162b2 to acquire high levels of neutralizing antibodies and high antibody titers in saliva suggest that vaccinated individuals may have reduced transmission potential. Substantially reduced neutralization for the South African variant further highlights the importance of surveillance strategies to detect new variants and targeting these in future vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody Formation , COVID-19/blood , Female , Gene Expression , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Mutation , Neutralization Tests , Protein Binding , Protein Domains/genetics , Receptors, Coronavirus/metabolism , Recombinant Proteins , SARS-CoV-2/genetics , Saliva/immunology , Saliva/virology
14.
Front Immunol ; 12: 626308, 2021.
Article in English | MEDLINE | ID: covidwho-1190310

ABSTRACT

We have previously shown that conformational change in the ß2-integrin is a very early activation marker that can be detected with fluorescent multimers of its ligand intercellular adhesion molecule (ICAM)-1 for rapid assessment of antigen-specific CD8+ T cells. In this study, we describe a modified protocol of this assay for sensitive detection of functional antigen-specific CD4+ T cells using a monoclonal antibody (clone m24 Ab) specific for the open, high-affinity conformation of the ß2-integrin. The kinetics of ß2-integrin activation was different on CD4+ and CD8+ T cells (several hours vs. few minutes, respectively); however, m24 Ab readily stained both cell types 4-6 h after antigen stimulation. With this protocol, we were able to monitor ex vivo effector and memory CD4+ and CD8+ T cells specific for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), cytomegalovirus (CMV), Epstein-Barr virus (EBV), and hepatitis B virus (HBV) in whole blood or cryopreserved peripheral blood mononuclear cells (PBMCs) of infected or vaccinated individuals. By costaining ß2-integrin with m24 and CD154 Abs, we assessed extremely low frequencies of polyfunctional CD4+ T cell responses. The novel assay used in this study allows very sensitive and simultaneous screening of both CD4+ and CD8+ T cell reactivities, with versatile applicability in clinical and vaccination studies.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Host-Pathogen Interactions/immunology , Integrins/metabolism , Adult , Aged , Amino Acid Sequence , Binding Sites , COVID-19/genetics , COVID-19/immunology , COVID-19/metabolism , COVID-19/virology , Carrier Proteins/chemistry , Cytokines/metabolism , Cytomegalovirus/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Female , HLA Antigens/chemistry , HLA Antigens/immunology , Host-Pathogen Interactions/genetics , Humans , Immunohistochemistry , Immunophenotyping , Integrins/genetics , Intercellular Adhesion Molecule-1/chemistry , Intercellular Adhesion Molecule-1/metabolism , Lymphocyte Activation/immunology , Male , Middle Aged , Protein Binding , Protein Multimerization , SARS-CoV-2/immunology , T-Cell Antigen Receptor Specificity , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL